48 research outputs found

    Transcriptomic insights into genetic diversity of protein-coding genes in X. laevis

    Get PDF
    © The Author(s), 2017. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Developmental Biology 424 (2017): 181-188, doi:10.1016/j.ydbio.2017.02.019We characterize the genetic diversity of Xenopus laevis strains using RNA-seq data and allele- specific analysis. This data provides a catalogue of coding variation, which can be used for improving the genomic sequence, as well as for better sequence alignment, probe design, and proteomic analysis. In addition, we paint a broad picture of the genetic landscape of the species by functionally annotating different classes of mutations with a well-established prediction tool (PolyPhen-2). Further, we specifically compare the variation in the progeny of four crosses: inbred genomic (J)- strain, outbred albino (B)-strain, and two hybrid crosses of J and B strains. We identify a subset of mutations specific to the B strain, which allows us to investigate the selection pressures affecting duplicated genes in this allotetraploid. From these crosses we find the ratio of non-synonymous to synonymous mutations is lower in duplicated genes, which suggests that they are under greater purifying selection. Surprisingly, we also find that function-altering ("damaging") mutations constitute a greater fraction of the non-synonymous variants in this group, which suggests a role for subfunctionalization in coding variation affecting duplicated genes.L.P. was supported by the NIH grant R01HD073104, also L.P., A.N. and V.S. were supported by R21HD81675, M.H. and E.P. by P40 OD010997.2018-03-0

    Identification of a targetable KRAS-mutant epithelial population in non-small cell lung cancer

    Get PDF
    Lung cancer is the leading cause of cancer deaths. Tumor heterogeneity, which hampers development of targeted therapies, was herein deconvoluted via single cell RNA sequencingin aggressive human adenocarcinomas (carrying Kras-mutations) and comparable murine model. We identified a tumor-specific, mutant-KRAS-associated subpopulation which is conserved in both human and murine lung cancer. We previously reported a key role for the oncogene BMI-1 in adenocarcinomas. We therefore investigated the effects of in vivo PTC596 treatment, which affects BMI-1 activity, in our murine model. Post-treatment, MRI analysis showed decreased tumor size, while single cell transcriptomics concomitantly detected near complete ablation of the mutant-KRAS-associated subpopulation, signifying the presence of a pharmacologically targetable, tumor-associated subpopulation. Our findings therefore hold promise for the development of a targeted therapy for KRAS-mutant adenocarcinomas

    Tree-Adjoining Grammars for Optimality Theory Syntax

    No full text
    This paper explores an optimality-theoretic approach to syntax based on Tree-Adjoining Grammars (TAG), where two separate optimizations are responsible for the construction of local pieces of tree structure (elementary trees) and the combination of these pieces of structure. The local optimization takes a non-recursive predicate-argument structure (PA-chunk) as an underlying representation and chooses the best tree structure realizing it. The linking optimization takes as an underlying representation a tree whose nodes are labeled by PA-chunks and chooses among a set of structurally isomorphic TAG derivation trees. We provide formal definitions of the OTAG system and prove equivalence in strong generative capacity between OTAG and TAG
    corecore